Virtual VFR and Pilot Safety
November 5, 2011 Leave a comment
Don’t Worry, There Won’t Be Any J-3s On An ILS To Minimums
Original date: August 2, 2011

"I'm sorry sir, these flat panel displays are for airliners only. Have fun with your morse code identifiers."
Warning: This blog is filled with aviation terminology that may be objectionable to land-locked readers.
This all started after reading Mac McClellan’s blog on head-up displays in light aircraft. I posted a response and one of my friends who happens to be an airline captain saw it and responded to my response (don’t you love the internet?). We’ve been going back and forth about the benefits of advanced technology for general aviation aircraft. Specifically, it was about synthetic vision and how it could create Virtual VFR regardless of weather conditions. His stance is that GA pilots don’t need super advanced instruments and information systems because it will make pilots fly into conditions they shouldn’t be in. My stance is that it will make those who take the time to learn how to use it much safer.
The sticking point in any field is that new technology that makes things easier is often seen as a crutch by those who did without for the majority of their lives. When GPS began showing up in aircraft, people said “What will you do if it all fails?” I would then point to their stack of navcoms, adf and loran receivers and ask them the same question. Stuff fails no matter how high tech or low tech it is. Dealing with failures is the burden of the pilot. The mean time between failures with modern electronics far surpasses any analog, transistor or vacuum tube based system that bore the generic label “computerized” in previous decades. Automatically that is a huge benefit not just for safety but for life cycle operating costs.
The other problem brought up during the initial GPS revolution was that people would forget how to navigate or look for other aircraft. That is a problem, not so much of the GPS but of people not knowing how to divide attention, especially in busy airspace. I remember several times with my instructor when we’d spot an airplane (or worse, get bounced from behind) I’d say “Did he even see us?”. To which Marty would always have a witty comeback like “Why don’t you get out and ask him. Think it’ll make a difference?”. I have no idea why the overtakers didn’t see us but a distraction is a distraction. I don’t care if its GPS, an ADF or some poor soul with headphones on listening for “dah-dit dah-dit” on the four course.
Flying in a general aviation aircraft, regardless of what we tell passengers is a more risky activity than driving on average. However the risks can be adjusted based on a pilot’s skill, comfort level and aircraft capability. Maybe a particular pilot doesn’t like flying in clouds, flies only for pleasure and operates an aircraft equipped with VFR only steam gauges. However this pilot wants to upgrade to a 3 tube EFIS system combined with a HUD. Should we deny them advanced navigation and weather information based on the assumption that he is going to suddenly start flying between level 5 thunderstorms? Should information-dense systems be the sole domain of the turbine fleet and business jets? If the light airplane pilot wants to fly a 300nm trip, is it fair to make them use less capable avionics, ostensibly to keep them out of trouble?

There's a lot of information, but how easy is it to interpret under stress?"
Being able to navigate a couple hundred miles through a high-pressure system without super-duper graphics and satellite weather should not be too difficult for any pilot. A basic GPS or (gasp) a stack of VOR receivers can get you just about anywhere in the United States. But the cushion of safety for those who choose to learn everything that their super-duper system can do for them is undeniable. The objective for VFR pilots is to use extra information to stay away from weather (terrain shouldn’t be a problem since if they’re VFR they should be able to see it). To say they don’t need it because they’ll start flying into frontal systems is like saying that airline pilots shouldn’t have terrain avoidance systems because they’ll see where the ground is and fly into it.
IFR flight on the other hand is a more difficult situation because there are so many variables in the types of aircraft, the types of missions, and the weather conditions at any given place or time. There may be the person in the Cirrus who is cruising at 11,000 feet on top of a cloud layer and wants to know the exact position of the hills hidden beneath those clouds. Sure he can use an IFR chart and know that by staying above the MEA he’ll be fine but let’s use the favorite example of instructors: What if the engine quit? Synthetic vision cannot dead stick an airplane onto an open farmer’s field automatically, but it does give the pilot far more information in an emergency situation with regards to wind direction, terrain location, obstructions, etc.
Take a single-pilot King Air on an ILS on a scuzzy day. The pilot has approach charts that show what the decision height is, how far from the touchdown zone that will be, what the missed approach procedure is, etc. And since the pilot is IFR rated and trains in a simulator at least once a year, it should be no big deal. However, if there is a distraction, or a problem with the aircraft, a small mistake could be made. To the delight of lawyers everywhere, I will be completely honest: pilots do make mistakes (if you don’t believe me, ask the NTSB). The majority of accidents are not one massive brain-fart but a series of smaller errors that compounded until the snowball became an avalanche. By providing easy to interpret data, the pilot’s mind is freed to deal with any other issues that arise during times when the mind is approaching task-saturation. So now while dealing with a generator problem, a sick passenger, or just an unfamiliar approach, the pilot is able to see the image of where the runway should be and cross-reference that with the standard charts and data. This removes all doubt as to the aircraft’s location and where it will be in the next 15 to 30 seconds. Breaking the links in the accident chain should be reason enough for encouraging use of such equipment.
Information-rich technology is not for every style of flying. I admit, it would be odd to fly a Stearman with a HUD. And a Cessna 152 that is only used for $200 dollar hamburger runs (inflation hurts, doesn’t it) would not need an extensive weather suite and electronic IFR charts loaded into the system. Am I in favor of putting EFIS and HUDs in everything from

Open cockpit EFIS
light sport to piston twins? Honestly it doesn’t matter what I think. If the pilot/operator feels that the technology will be a benefit to their type of flying, then full support should be offered for getting that equipment into their cockpits. I was in Woody Saland’s hangar a while back and was intrigued by the fact that his AirCam had synthetic vision EFIS, EICAS and an autopilot. Why would anyone want so much technology in an open cockpit airplane? Then it hit me: To make the task of converting numbers, radials and performance figures into an instantly interpretable view of what your aircraft is doing. With so much of your mental capacity relieved of that repetitive task, you can actually enjoy the act of flying.