GA For The Masses

Like many others, I am acutely aware of the slow (and accelerating) death of general aviation in the United States. I won’t go into all the reasons for this as we’d end up with a 400 page article on everything from Baby Boomers to the aircraft certification process. I would like to bring to light some things that will help the public feel like general aviation is something they can be involved with. Hopefully with larger numbers of people who care about flying, our diagnosis will change to “critical but stable” rather than “who is the next of kin?”.

Don’t take these suggestions personally. If we aren’t honest with ourselves, we can’t help ourselves.

 

Stop trying to make everyone a pilot.

Guilty parties: Pilots, aviation advocacy groups.
Who can help: Pilots, aviation advocacy groups, FBOs, flight schools.

Just because a person likes football does not mean that they can or even should tryout for the Dallas Cowboys. Similarly, just because a person shows a passing interest in airplanes does not mean we should try to coerce them to become a pilot. There are people who love to photograph airplanes but hate being in the air. There are some who like being around fast machines but have no desire to spend thousands of dollars on the license (let alone currency and additional ratings). The enthusiast who enjoys paying for a sightseeing ride may not want instruction but is still helping to keep that aircraft and its operator in business. These people are valuable allies in the effort to keep general aviation a part of the fabric of America. One hundred thousand people who are passionate about aviation but aren’t rated are more effective than ten thousand pilots with similar passion. It’s all a numbers game, especially in Washington D.C..

Instead of telling people how great it is to be a pilot, we should understand that while anyone can like airplanes, taking that extra step to become a pilot for most people is Natalie Flyinga pretty significant leap. Invite those who are open to the idea for rides around the pattern. Don’t teach them anything, just let them enjoy and take in the unique perspective from 1000ft AGL. The experience should be something akin to cruising in a classic convertible on a sunny day. The ambiance would be ruined if the driver suddenly began explaining the construction method used for the valve lifters and the maximum cornering g-force.

Hangar Party

For those who show no interest in going up, let them have fun on the ground. Sponsoring regular open-house BBQs or hangar hang-out events at local airports is a great way to get people to the airport. Take care to see that non-aviators aren’t made to feel like outsiders. Consider a country club or marina; not everyone who goes to those facilities knows how golf or sail. For them, the golf and the boats are a backdrop for social interaction. If we use aircraft as a backdrop to events rather than the centerpiece, it makes the concept of being around airplanes less foreign.

 

Make the airport accessible.

Guilty parties: DHS, airport management, people afraid of their own shadows
Who can help: DHS, airport management, local municipalities, aviation advocacy groups, FBOs, flight schools

After 9/11, many airports went from being a fun place to hang out to a glorified Supermax with runways. Trying to fence off an airport for anti-terrorism purposes is to be polite, pointless and insulting. Maybe lawmakers haven’t noticed but airplanes have a peculiar habit of rising far above the security fence once they take off. A two-dimensional solution for a three-dimensional vehicle leaves a spare dimension of uselessness. Furthermore, I doubt that anyone bent on creating havoc and killing innocent people is really going to be worried about a trespassing rap for jumping a six-foot fence.

The best defense is popularity. Rather than fence off airports, turn them into even more valuable places for commerce and recreation. Recreation? At an airport? Of course! Why wait for a municipality to close an airport and turn it into a park? Make it a park right now. Find regions outside the runway protection zone and install bike/jogging trails complete with mile markers and the occasional water fountain. Create a playground in an empty corner of the field safely away from any operations but close enough for kids to see airplanes. With a steady stream of people using the airport for recreation, it becomes much more difficult for the maladjusted to execute their plot. For those convinced that trails would attract ne’er-do-wells, random placement of security/safety cameras along the trail would allow for monitoring of the perimeter, probably to a higher degree than would be possible without such a park.

The idea of an airport as a commerce center is not radical, but actually a very low risk method to bring regular people in close proximity with aviation. With proximity, uneasiness and fear begin to vanish and understanding takes its place. If there is an abandoned building or hangar, there is little reason why the airport, FAA and governing town can’t come to an agreement to let a non-aviation business operate in that location. For that matter, undeveloped space on or near the airport should be considered for retail or commercial buildings. In an ideal world, any retail space would feature windows that face the runway, aviation artwork or even ATC piped in over the stereo system. But even without those nods to aerospace, it’s a far better solution than letting airport buildings sit in disrepair and disintegrate. Not to mention, the tax revenue generated would be a welcome addition to the governing municipality’s coffers (and thus secure the airport a more stable future).

 

Reduce The Elite Status of Aviation

Guilty parties: Pilots
Who can help: Pilots, aviation advocacy groups

Since the first airplane took to the skies, non-pilots have imagined that it takes nerves of steel, lightning fast reflexes and a better handle on math than Euclid. For the majority of flying, this is simply untrue. Judgment and planning are the difficult parts. Usually that’s where mistakes are made that manifest themselves later in flight. The actual act of flying is really easy provided that the proper motor skills and coordination have been learned. I liken it to throwing a perfect spiral in football. You may be able to explain it with physics and algebra but the best way to learn is to practice under the tutelage of someone experienced. After a while it becomes second nature.

The image that the public has of VFR general aviation flying is wrong on many counts. One thing that remains true however, is that flying is unavoidably expensive and that cannot be changed (at least in the current economic situation). We must acknowledge that barrier and not pretend that flying is an affordable activity for everyone. But in terms of operation, a person by no means has to be a steely eyed missile man in order to fly a Piper Cherokee. We won’t be able to impress people anymore about how hard it is to wrestle the controls on a 5 knot crosswind landing, but there will be many more people who will realize that they have the ability to become a pilot too.

 

Safety. Enough Already.

Guilty parties: All of aviation
Who can help: All of aviation

Aviation has a hazardous streak. There are a lot of things that can go wrong very quickly. Even with backups and training, accidents will happen. That being said, aviation as a culture is so safety obsessive that it frightens people away. Right now I’m looking at an general aviation magazine and a motorcycle magazine that are both sitting in my room. Guess which magazine has more articles on safety despite having a lower number of articles total?

Motorcycle riding has very real hazards associated with it, just like general aviation flying. Yet when you read their periodicals, you don’t see issue aftebike-vs-planer issue featuring discussions about accidents and close calls. They focus on the fun aspects of the hobby while still encouraging responsible riding. Justifying our accident discussions as wanting others to learn from our mistakes is noble but selfish. If we think that pilots are the only ones who look at these magazines, we’re wrong. Many a spouse has seen one too many articles on accident rates and one too many features with the title “There I Was On A Dark And Stormy Night With An Engine On Fire” and decided that their mate was not going to engage in the apparently deadly act of flying small planes. Let’s do our best not to scare off people who want to fly or give fodder to the misinformed who think that “little airplanes are always crashing”. This is not to gloss over the risks involved, but to moderate the rate at which they are exposed to them.

 

 

 
These observations are based on spending time around regular people, pilots, then finding the average between the two. Thinking from the perspective of someone who knows nothing about general aviation, a lot of things about flying can be intimidating. Great strides have been made in making airports more accessible to people other than pilots and there are many cases of airports and cities working together rather than against each other. This is proof that reaching out is more effective than pulling back.

There are a lot of misconceptions about flying and many of them are self-inflicted due to our relative isolation from the general public. We need more people to support general aviation but they won’t show up until they feel welcome. Giant billboards and ad campaigns won’t change anything. Conversely, slightly altering our actions makes every pilot in America an ambassador and every airport a welcome center.

It’s Wi-fi, Not Wi-Fly

For the record, I’m not an IT specialist, a security analyst or a person with top secret clearance (my clearance is bottom secret only). I am however someone with a fairly extensive knowledge of aircraft, systems, avionics and other stuff that’s related to being off the ground at high speeds. Therefore, I’m going to address the aircraft systems side of the current wi-fi hacking issue.

Recent articles have stated that it is possible to hack into an aircraft’s controls via a wi-fi connection. Some hackers have even publicly stated that they could and have get into an airplane’s avionics (and they probably got a nice visit from gentlemen driving cars with government plates soon thereafter). The worst case scenario that keeps getting bandied about is a passenger taking over the airplane from a laptop and making it go wherever the hell they want. This may be possible on some astronomically small level, but in reality it is not very plausible with current aircraft designs.

Everyone always talks about how airplanes are flown by computers. I’ve been at airshows where people next to me confidently tell whoever will listen that “Those Blue Angel pilots aren’t even doing anything. The computers are flying the airplanes, it’s all a program.” Passengers often assume that the pilots up front are just following commands from “ground control” and that computers will be able to take over completely by 2017. This is what happens when an industry touts its technology rather than its technicians…the machines become the heroes.

Part of this is a misunderstanding of basic aircraft systems, which considering the level of knowledge most people have about aircraft in general, is not surprising. Aircraft may be “flown” by computers, but human pilots tell the computers what to do (and if the computers get a a superiority complex, the humans can override the machines). It’s the same as how computers in your car govern much of its operation, but you still turn the wheel and hit the pedals manually.

Aircraft are a weird combination of old and new technology designed to provide ease of operation, redundancy and graceful degradation. Save for a few military jets (the statically unstable F-16 as a prime example), virtually all aircraft have a physical connection from the cockpit controls to the control surfaces. This ensures that even in the event of a major emergency, the pilot(s) will be able to maneuver the aircraft to a landing. These physical connections may be steel cables, pushrods, hydraulic actuators, screwjacks or a combination thereof.

While the old technology works great for ensuring that pilots can continue to fly even after malfunctions, the new technology is perfect for making the aircraft more precise, more capable and easier to manage over a variety of situations. Of course, this all hinges on the pilots understanding and being masters of all the different modes that the automation systems offer (they do and they are). Some of these systems include:

  • Where-Are-We Systems: Inertial navigation systems (INS) are self contained units that use laser ring gyros to determine where the airplane is at any point on the planet with extreme accuracy; global positioning systems (GPS) that use satellites to triangulate the aircraft’s position. These prevent getting lost, which as a rule tends to erode passenger confidence.
  • What-Are-We-Doing Systems: Attitude Heading Reference System (AHRS) that uses accelerometers to figure out what the pitch, roll and yaw state of the aircraft is; Air Data Computers (ADC) takes analog inputs from the pitot-static system and Angle Of Attack (AOA) probes to provide the pilots and other computer systems with information on how fast and how high the airplane is.
  • Do-What-I-Tell-You Systems: Input interfaces like the Control Display Unit (CDU) allow pilots to enter data into the Flight Management System (FMS) to create and manage flight plans, and Autopilot Mode Control Panels (MCP or FCU) that give the pilots the ability to change autoflight settings or most importantly, disengage automation if the situation calls for it.
  • How Are We Feeling Systems: The Central Maintenance Computers (CMC) and crew alerting systems (EICAS) check the health of the aircraft, run checklists and alert the pilots to any unusual situations. These are the computers that stole the job of the flight engineer…the third guy in the cockpit you often see in old movies.
  • I-Can’t-Let-You-Do-That Systems: In some aircraft there are systems that prevent pilots from exceeding certain limits. Examples include Thrust Management Systems (TMS) that protect engines from overheating or overspeeding and commands the autothrottle system, and Flight Control System computers (FCS) that process information from various sources, determine what the pilots are asking for in terms of maneuvering and either direct or implement those inputs to the control surfaces and engines.

At this point you may have noticed that the aviation industry loves acronyms. You also may have noticed that there is not one single computer that controls the airplane. Probably the most important system in the bunch, the FCS is usually comprised of several computers all speaking different languages. If one computer doesn’t agree with the others, it is overruled. If two computers don’t agree with the other two, the fifth one kicks in as a tiebreaker. Needless to say, the implementation is far more complex than linking a couple desktops together with an ethernet cable, but the theory is straightforward.

Beyond just being the Supreme Court of the airplane, the FCS also acts as a mediator between the pilot’s inputs and control surface positioning. This provides protection against exceeding certain attitude limits, speeds or energy states. In some aircraft, full-time protection is provided to prevent pilots from This protection is present even if the pilots are flying the aircraft by hand. In other airplanes, protections are more limited and mostly confined to autopilot modes or dampers that reduce unwanted transients in a given axis. In any case, the idea is to prevent a pilot-induced situation from damaging the aircraft.

There is an even more advanced group of aircraft that operate with what is known as fly-by-wire. These aircraft have virtually no mechanical connections to control surfaces. They use electrical signals produced by force sensors or position transducers to trigger the movement of a self-contained hydraulic actuator near the control surface. The FCS in this case becomes the equivalent of Judge Dredd whereupon it declares “I am the law!” as it pertains to aircraft operation (seriously, the protections are referred to as Control Laws…if you flew an Airbus you’d be cracking up at that last pun). Pilots at that point are “educated suggesters” who tell the airplane what they want and the airplane decides if it’s a good idea or not. For example, if a pilot sees a giant condor while climbing at 400mph and yanks back on the controls, instead of allowing the wings to be ripped off, the FCS will say “Listen, I know that massive bird startled you, but if I let you pull as hard as you’re asking, we’re going to have bigger problems. I’m going to limit you to 1.8G rather than 5.3G. You’ll thank me.

Different manufacturers have different views on how this should be implemented. Boeing prefers a more pilot-centric interface while Airbus leans towards a computer-centric operation. Both methods have their advantages and drawbacks. As creepily cybernetic as this sounds, commercial fly-by-wire aircraft still have mechanical reversions so that in the event that all the computers decide to divide by zero, the pilots can still fly the aircraft to a safe landing.

What is the point of me writing all this aerotech babble? To try to explain that aircraft control is a complex and well thought out architecture. Most of the robustness is there for nature and emergencies. Situations like getting struck by lightning cannot affect the operation of the critical avionics, therefore aircraft are tested by literally getting zapped by a massive Tesla coil before they can be certified. The loss of an ADC cannot cause the airplane to go out of control, therefore multiple ADCs are installed. The total loss of electrical power cannot cause the airplane to shut down its fly-by-wire controls, thus a deployable ram-air turbine is installed for just such an emergency. In the face of all these natural and mechanical threats, it therefore seems overly simplistic to assume that a hacker could seize control of an airplane.

Herein lies the issue with “laptop terrorist” scenario: There is no conceivable way that an individual can seize control of an airplane through a wi-fi signal without someone up front (read: pilots) figuring it out and taking corrective action. If for some implausible reason both pilots don’t notice the change in flight path, it is guaranteed that the air traffic control center responsible for the flight would notice that an airplane under positive radar control just decided to stroll off on its own. Even if someone could find holes in a firewall and hack their way through all the different systems to get to the autopilot, controlling the aircraft is not as easy as typing “C:\>FLYTOCUBA.EXE”.

But for argument’s sake, lets say Super Hacker can figure out how to change the heading or altitude. For all intents and purposes, control of the airplane is now in the hands of some guy in seat 37Q and everyone is doomed, right? Wrong. The pilots are not helpless, nor are they at the mercy of computers, laptops or otherwise. All they have to do is pull the disconnect switch on the autopilot. In the event that Super Hacker figured out how to disable that function as well, they’ll just pull the A/P circuit breaker, then walk to the back and smash his computer over a beverage cart.

All joking aside, this threat illustrates the continued need for humans to be in the decision loop when it comes to flying commercial aircraft. The insistent push for total automation especially in the wake of the Germanwings catastrophe is an emotional reaction that ignores the advantages of having both humans and computers working together. When backlit against the threat of nefarious individuals who wish to do harm, these advantages are even more important. Nevertheless, aircraft will become increasingly more automated in coming years and protecting them against electronic threats will be just as critical as protecting them against ice and microbursts.

For now, you don’t have anything to worry about.

Know It All…Or Not

If I have to repair this in flight, something is beyond horribly wrong.

If I have to repair this in flight, something is beyond horribly wrong.

I punched a fist of joy into the air upon reading Bruce Landsberg’s recent editorial in the February 2014 AOPA Pilot magazine. He addressed the topic of useless knowledge being taught rather than critical overall concepts. I’ve been saying this very same thing for years, but since I don’t have a type rating in the Saturn V, I’m viewed as a dangerous menace to the national airspace system. Thankfully, his article lends credence to my stance that we often focus on useless data in aviation that is of little practical or emergency use. We should be looking at the big picture items with a lot more interest rather than the little details that only impress other pilots or examiners.

While I’d love to claim credit for being a maverick as it relates to the idea of not needing to know everything there is to know about an aircraft, NATOPS was leading the way with this mindset years ago. Anyone who has flown in the US Navy knows that the manuals for aircraft are purposely designed to exclude excess systems information. The only things that are included are things that the pilot either has control over, or any system that can cause a hazard to continued flight (and how that hazard will manifest). The reason is simple: mechanics fix airplanes and pilots fly them. This division of labor is present even in civilian aviation where the FAA makes it a point to tell pilots that save for a few preventative measures; they are not allowed to be a mechanic on their airplane.

I believe this focus on knowing every system in detail is a holdover from the good ole days of aviation (which we simply cannot move on from it seems). Systems were very complex and highly mechanical in nature. All of them were controlled by human beings, hence the plethora of people in the cockpit of vintage airliners. The flight engineer literally made sure all the systems operated the way they were supposed to. The pilots flew and if present, the navigator made sure they didn’t get lost. The crew had to understand their piece of the equation and at least a little bit of the other guy’s in order to pull off the flight.

Fast forward to today where the airplane’s flight engineer is the ECAM that collects and displays information about the status of every system several times per second. You literally don’t need to know much more from an operational standpoint for many systems other than “Is it on?”, “Is it off?”, and “Should it be in that state?” A friend of mine flies a Brazilian-built regional jet and has to memorize the starting and operating temps, abnormal shutdown criteria, and various RPM ranges…for the APU. Meanwhile, the only direct control over this device the pilots have is an Off-On-Start switch, a Stop switch and an emergency fuel shut-off switch (in the event of a fire, overspeed or overtemp, the APU FADEC will automatically command a shutdown). Does it make sense that three switches with a total of five possible selections warrants memorizing the type of compressor, every temperature limit, every RPM limit, and the type of cooling used by the APU?

While it may be interesting information to know, the role of a modern airline pilot is not to play mechanic. It is to fly the aircraft from Point A to Point B. If there is a problem with the aircraft, they write up what isn’t working and if it isn’t on the MEL, continue flying until it can get fixed by the maintenance guys. It’s not about being cavalier, it’s about being efficient with specialized skills. Ask yourself if there is any way for a motivated captain to crawl back to the tailcone in flight (there isn’t since the APU is surrounded by a firewall). Even if they could get back there, what could they do to fix a problem? Last time I checked, airlines don’t hand pilots toolkits with their Jepp revisions. What if more time in review and sim sessions was spent talking about things that are more likely to be encountered in day-to-day operations, rather than the specifics of a component that the pilot will most likely never even see and has limited control over?

Air France 447 is a perfect example of why broad scale knowledge is critical. An aircrew faced with a rare and confusing situation may be spring-loaded to go to a rather complex solution due to the way we train them. Ignoring the control input issues, had the crew been taught to look at the big picture of where is the information coming from, they might have considered the fact that the FMGS was likely showing correct groundspeed based off the GPS signals it automatically updates with. Additionally, the combination of pitch and power for a given flight condition would have led to suspicion that the EFIS PFD was at least partially lying (and thus to look for independent data, such as the FGMS). This is not an indictment of the crew, but a look at how a few seconds to consider the big picture before zeroing in on a smaller picture solution may prevent accidents like this from happening again.

The Air France accident was not the first time a high performance jet was lost at night in the vicinity of thunderstorms due to faulty instruments. A nearly identical situation occurred in a B-58 on February 14th, 1963 when the pitot tube iced up and the pilot began unknowingly following erroneous airspeed data. When the controls felt sloppy and he suspected something was wrong, the pilot cross-referenced with the Machmeter, but this was also giving an incorrect reading. It wasn’t until the pilot asked the navigator (who had an independent pitot system) what the airspeed was that he realized the delta-winged bomber was about to drop out of the sky. The aircraft ended up departing controlled flight and the crew members were forced to eject (see the article “B-58 Hustler” by Jan Tegler in the December 1999 issue of Flight Journal for the entire story). Hopefully with changes in training and multiple-source independent airdata, there won’t be any more accidents like these.

Aerodynamics is another place where we overthink things to the point that it might be causing poor decisions in some situations. My favorite horse to flog is the recent bank angle conservatism being taught in the United States. There is no magic law of aerodynamics that says if you bank 31 degrees at 999 feet AGL, your airplane will autorotate into a flat spin. Although the intentions are good, the source of this fear stems from the g-load charts that we all looked at as student pilots. In a 60 degree bank, load factor is doubled and stall speed increases substantially. The only problem is that this is only true if you attempt to maintain altitude. It is not even close to accurate in a descending turn. Nor is it accurate if one is flying an airplane with a lot of excess power/thrust. We have become so obsessed with the book numbers that the bigger picture of how aircraft actually fly in three dimensions is being lost.

Don't freak out if you hit 60 degrees of bank while descending.

Don’t freak out if you hit 60 degrees of bank while descending.

There are student pilots (and an increasing number of certified pilots) who will either fly C-5A sized patterns, or make skidding turns in order to keep the bank angle low. The former negates the engine-out glide advantage of a close pattern while the latter actually is a perfect setup for a spin. To be honest, a bank beyond roughly 30 degrees is not really necessary at speeds under 80 knots if the proper lateral spacing is used. The trap is when the pilot comes in a lot faster or much closer due to ATC request or their own misjudgment. All of a sudden as they notice they’re going wide, the rudder gets kicked in and opposite aileron starts to hold the bank angle constant. The saving grace is that usually this situation is created by having a surplus of airspeed so a spin isn’t likely provided they return to coordinated flight fairly quickly. Rather than worrying about a chart that isn’t applicable to their conditions, they should be taught the confidence to put the airplane where it needs to be to get where they want to go.

Again, before people get riled up, there is a time and a place for sticking to book numbers. Early 727 pilots who tried to eyeball the landings as if it was a DC-3 with jet engines learned about the importance of sticking to the book. But the book isn’t magic. The numbers it contains are the sum of the properties of the atmosphere plus the aircraft’s design plus the systems installed. If it takes the engines 9 seconds to spool from flight idle to “Oh crap” thrust, the obvious solution is to not be low and slow while at idle. You don’t need to know how many stages are in the low pressure compressor (six total, two fan and four compressor) to get the big picture of why you keep the power up on final. Knowing the big picture of how heavily loaded swept wings behave at high angles of attack will also give you a better understanding of why simply lowering the nose won’t immediately get you out of trouble (plus the delay in thrust buildup to further compound your woes). It is true that sticking to the book will ensure that you arrive safely, but it is better to understand both the concept and the details.

Pilots cannot and should not know it all. The FAA regulation to “Familiarize yourself with all available information concerning that flight” is a rule designed so that if a pilot makes any error that “reckless and careless” doesn’t cover, the book can still be thrown at them. Rest assured that if you put one into the ground a half-mile short, you’re getting blamed for not getting a weather briefing despite it being CAVU with calm winds, flying an aircraft with an inoperative ADF and for not knowing the airport manager’s office phone number . This is a poor way to ensure safety but a great way to have instant blame in the event of an incident. Instead of scaring pilots into trying to read everything to fit some liability model, we should be encouraging them to select the appropriate data for what they want to do.

We collectively have to accept that despite what we would like to have everyone believe, 99.2% of pilots will never know every single little detail about their airplane. This should be instilled in student pilots via the way they are taught. Start with the basics and allow them to get used to the 3rd dimension. Instead of filling their heads with regulations from day one, ease off and let them enjoy flying. Let them have a few hours of wrapping their heads around controlling the airplane before revealing that they’re going to have to become a lawyer as well to understand all the regulations. Instructors can easily move from the big picture of “Let’s do our maneuvers up high so if you make a mistake we have plenty of room.” to the verbatim description of FAR 91.303 over the course of their training. The rules will make more sense anyway if a little bit of experience and common sense are applied rather than “you need to know this for the test”.

As usual, I’m sure not many people will read this (especially this far down) and those that do think I’m either full of myself, dangerous, a crusader or a combination of the three. The truth is I love aviation but I’m also willing to point to where we can do a better job making it less daunting for newcomers to get involved, safer for those already flying and more enjoyable for everyone. If we are honest, it’s time to admit that the act of flying is not very difficult in execution. Judgment on the other hand is what kills people. Being able to recite regulations does not stop people from flying into IMC or descending below minimums. Only the proper attitude and respect for the fact that you’re suspended in the air by the laws of physics and aerodynamics will make a person accept their own limits and those of their aircraft. This must be stressed more than any chart, schematic or diagram.