Supersonic Now
March 2, 2015 Leave a comment
When the Concorde was gearing up to fight off environmentalists, Lockheed and Boeing were in the middle of trying to construct a supersonic transport for the United States. Due to budget issues and noise concerns, the projects both were abandoned and we’ve spent the rest of our lives tooling along at the universal atmospheric speed limit of Mach 0.80. While I have no problem with people lobbying against having to live with 15-30 booms per day (for those who live under jet routes, it would have been very disturbing), I do have an issue with the “oh well, forget it” mentality that plagues our society after the passing of regulations. We collectively said forget it, nobody needs to fly that fast because supersonic flight was banned via federal law.
Or was it?
FAR 91.817 states that:
(a) No person may operate a civil aircraft in the United States at a true flight Mach number greater than 1 except in compliance with conditions and limitations in an authorization to exceed Mach 1 issued to the operator under appendix B of this part.
(b) In addition, no person may operate a civil aircraft for which the maximum operating limit speed MM0exceeds a Mach number of 1, to or from an airport in the United States, unless—
(1) Information available to the flight crew includes flight limitations that ensure that flights entering or leaving the United States will not cause a sonic boom to reach the surface within the United States; and
(2) The operator complies with the flight limitations prescribed in paragraph (b)(1) of this section or complies with conditions and limitations in an authorization to exceed Mach 1 issued under appendix B of this part.
Now, I for one would like it if FAA regulations were written for regular people instead of law students, but it doesn’t take many mental cartwheels to understand this rule. Nowhere in the entire rule did it say that you could not fly past Mach 1 under any circumstance. Further more, subsection (b)(1) has given operators a stipulation that allows them to break Mach. What the FAA has stated is that supersonic flight that creates a sonic boom on the surface is prohibited. Technically, if one were able to fly supersonic without creating an audible boom, it is allowed. That means you can imitate Chuck Yeager all the way from TEB to DFW provided that your boom does not reach the surface.
If my decidedly non-legal interpretation is true, why have we as a nation stopped all development on civil supersonic flight? Other than the persistent efforts of Aerion Corporation and a few attempts by Gulfstream, Dassault and Lockheed Martin, there has been very little interest in going faster. I shudder to think that manufacturers were limiting their efforts based on misinterpretation of a rule (or maybe they had it right and it’s my misinterpretation). What is more likely is that faster speeds like Mach 2.0 and Mach 3.0 were what designers wanted to achieve. Engine efficiency goes way up due to ram compression and range can actually be improved with an increase in speed (to a certain limit). Going that fast in the stratosphere will always generate an audible boom, so there was no point in conducting research. The end result is that by taking a government rule and connecting it with a physical rule (flight beyond Mach 1 will always produce some sort of boom), manufacturers in effect put themselves out of the supercruise business.
But for every law of nature, there is a workaround (you may not get exactly what you wanted but what you get is better than nothing). There is a way to go fast without scaring the crap out of citizens. It takes advantage of the different temperatures in our atmosphere and uses them as a muffler. For years, scientists, engineers and pilots have known about a phenomenon called Mach Cutoff. In layman’s terms, it is a certain Mach speed that if exceeded, will result in an audible sonic boom on the ground. Below this speed, no sonic boom will be heard by people on the surface. This speed varies based on air temperature, weight of the aircraft and of course the elevation of the ground one happens to be flying over. For practical purposes, most aerodynamicists use the range between Mach 1.15 and Mach 1.2 as a standard cutoff.
Hidden by obscurity, Mach Cutoff did not do anything to spur development of faster aircraft until fairly recently. In those intervening years there was also very little research in how to fly with a quiet, muffled or ground-level silent sonic boom. The conventional wisdom said that all sonic booms were created equal and that you couldn’t avoid or mitigate them in any way. However, in the late 1990s and early 2000s there was a resurgence in high speed flight testing. NASA tested a modified F-5 with what appeared to be a boat hull fuselage. They also tested an extendable spike in the nose of an F-15 to see if creating a series of weak oblique shocks would be less offensive acoustically. Aerion tested a natural laminar flow wing section on the bottom of an F-15 to study the effects of supersonic forces on a straight wing. It appears that there is at least some interest in going fast if it can kept quiet.
What does this mean for a well-organized and equally well-funded designer? It means that there is no reason that designer can’t build something fast today. Of course this is very easy for me to say sitting here with exactly $17.81 in my pocket and not a single airplane built to my name. But a person doesn’t need to run an aerospace firm to know that there is a lot to be gained from building a proof-of-concept vehicle. Investors like something they can see, touch and sit in better than CAD generated images. Other developers become inspired and improve upon another firm’s work. Sometimes breakthroughs are made when idiosyncrasies that simply cannot be predicted in computer models are experienced and rectified in a flight test program.
It’s 2015 and we are well into the future that was predicted when most of us were children. I don’t have to say that while some things are an improvement, other things are complete letdowns. Flying at the same speeds that we attained in the 1950s is not a limitation of physics or economics, but of our own desires. We’ve become complacent and comfortable with what is essentially six decade old technology. Sure we’ve refined it and eked out far more efficiency than we ever imagined, but is that it? Are we supposed to be excited over another 1% fuel savings? Are we supposed to look at an aircraft with awe because it features a self contained 5G network?
The last 60 years were nice, but it’s time to go meet the future. Let’s move beyond where we are to where we should be.